skip to main content


Search for: All records

Creators/Authors contains: "Pan, Qingfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The crystal structures of 2,3,4,6-tetra- O -benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri- O -benzoyl-β-D-glucopyranose ethyl acetate hemisolvate, C 61 H 50 O 18 ·0.5C 4 H 8 O 2 , and 1,2,4,6-tetra- O -benzoyl-β-D-glucopyranose acetone monosolvate, C 34 H 28 O 10 ·C 3 H 6 O, were determined and compared to those of methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (methyl β-lactoside) and methyl β-D-glucopyranoside hemihydrate, C 7 H 14 O 6 ·0.5H 2 O, to evaluate the effects of O -benzoylation on bond lengths, bond angles and torsion angles. In general, O -benzoylation exerts little effect on exo- and endocyclic C—C and endocyclic C—O bond lengths, but exocyclic C—O bonds involved in O -benzoylation are lengthened by 0.02–0.04 Å depending on the site of substitution. The conformation of the O -benzoyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H—C—H bond angle of an 1°-alcoholic C atom. Of the three bonds that determine the side-chain geometry, the C—O bond involving the alcoholic C atom exhibits greater rotational variability than the remaining C—O and C—C bonds involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of the O -acetyl side-chain conformation in saccharides. 
    more » « less